Hapi Documentation

Mostafa Farrag

Feb 02, 2023

CONTENTS

1 Hapi - Hydrological library for Python 2

2 References S

https://pypi.org/project/HAPI-Nile/1.0.4/
https://pypi.org/project/HAPI-Nile/1.0.4/
https://pypi.org/project/HAPI-Nile/1.0.4/
https://anaconda.org/conda-forge/hapi
https://pypi.org/project/HAPI-Nile/1.0.4/
https://pypi.org/project/HAPI-Nile/1.0.4/
https://anaconda.org/conda-forge/hapi
https://pepy.tech/project/hapi-nile
https://pepy.tech/project/hapi-nile
https://pepy.tech/project/hapi-nile

CHAPTER
ONE

HAPI - HYDROLOGICAL LIBRARY FOR PYTHON

Hapi is a Python package providing fast and flexible way to build Hydrological models with different spatial represen-
tations (lumped, semidistributed and conceptual distributed) using HBV96. The package is very flexible to an extent
that it allows developers to change the structure of the defined conceptual model or to enter their own model, it contains
two routing functions muskingum cunge, and MAXBAS triangular function.

1.1

Main Features

Modified version of HBV96 hydrological model (Bergstrom, 1992) with 15 parameters in case of considering
snow processes, and 10 parameters without snow, in addition to 2 parameters of Muskingum routing method

Remote sensing module to download the meteorological inputs required for the hydrologic model simulation
(ECMWF)

GIS modules to enable the modeler to fully prepare the meteorological inputs and do all the preprocessing needed
to build the model (align rasters with the DEM), in addition to various methods to manipulate and convert different
forms of distributed data (rasters, NetCDF, shapefiles)

Sensitivity analysis module based on the concept of one-at-a-time OAT and analysis of the interaction among
model parameters using the Sobol concept ((Rusli et al., 2015)) and a visualization

Statistical module containing interpolation methods for generating distributed data from gauge data, some dis-
tribution for frequency analysis and Maximum likelihood method for distribution parameter estimation.

Visualization module for animating the results of the distributed model, and the meteorological inputs

Optimization module, for calibrating the model based on the Harmony search method

The recent version of Hapi (Hapi 1.0.1 Farrag et al. (2021)) integrates the global hydrological parameters obtained by
Beck et al., (2016), to reduce model complexity and uncertainty of parameters.

For using Hapi please cite Farrag et al. (2021) and Farrag & Corzo (2021) References

1.2

IHE-Delft sessions

In April 14-15 we had a two days session for Masters and PhD student in IHE-Delft to explain the differ-
ent modules and the distributed hydrological model in Hapi [Day 1](https://youtu.be/HbmUdN9ehSo) , [Day
2](https://youtu.be/m7kHdOFQFIY)

1.1. Main Features 3

https://youtu.be/HbmUdN9ehSo
https://youtu.be/m7kHdOFQFIY

1.3 Future work

* Developing a regionalization method for connection model parameters with some catchment characteristics for
better model calibration.

* Developing and integrate river routing method (kinematic and diffusive wave approximation)
* Apply the model for large scale (regional/continental) cases

* Developing a DEM processing module for generating the river network at different DEM spatial resolutions.

1.3. Future work 4

CHAPTER
TWO

REFERENCES

Farrag, M. & Corzo, G. (2021) MAfarrag/Hapi: Hapi. doi:10.5281/ZENODO.4662170

Farrag, M., Perez, G. C. & Solomatine, D. (2021) Spatio-Temporal Hydrological Model Structure and Parametrization
Analysis. J. Mar. Sci. Eng. 9(5), 467. doi:10.3390/jmse9050467

Beck, H. E., Dijk, A. I. J. M. van, Ad de Roo, Diego G. Miralles, T. R. M. & Jaap Schellekens, and
L. A. B. (2016) Global-scale regionalization of hydrologic model parameters-Supporting materials 3599-3622.
doi:10.1002/2015WRO018247 Received

Bergstrom, S. (1992) The HBV model - its structure and applications. Smhi Rh 4(4), 35.

Rusli, S. R., Yudianto, D. & Liu, J. tao. (2015) Effects of temporal variability on HBV model calibration. Water Sci.
Eng. 8(4), 291-300. Elsevier Ltd. doi:10.1016/j.wse.2015.12.002

2.1 Installation

2.1.1 Stable release

Please install Hapi in a Virtual environment so that its requirements don’t tamper with your system’s python Hapi
works with all Python versions

2.1.2 conda
the easiest way to install Hapi is using conda package manager. Hapi is available in the conda-forge channel. To install
you can use the following command:

e conda install -c conda-forge hapi

If this works it will install Hapi with all dependencies including Python and gdal, and you skip the rest of the installation
instructions.

https://conda-forge.org/

2.1.3 Installing Python and gdal dependencies

The main dependencies for Hapi are an installation of Python 2.7+, and gdal

2.1.4 Installing Python

For Python we recommend using the Anaconda Distribution for Python 3, which is available for download from https:
/lwww.anaconda.com/download/. The installer gives the option to add python to your PATH environment variable. We
will assume in the instructions below that it is available in the path, such that python, pip, and conda are all available
from the command line.

Note that there is no hard requirement specifically for Anaconda’s Python, but often it makes installation of required
dependencies easier using the conda package manager.

2.1.5 Install as a conda environment

The easiest and most robust way to install Hapi is by installing it in a separate conda environment. In the root repository
directory there is an environment.yml file. This file lists all dependencies. Either use the environment.yml file
from the master branch (please note that the master branch can change rapidly and break functionality without warning),
or from one of the releases {release}.

Run this command to start installing all Hapi dependencies:
e conda env create -f environment.yml

This creates a new environment with the name hapi. To activate this environment in a session, run:
e activate hapi

For the installation of Hapi there are two options (from the Python Package Index (PyPI) or from Github). To install a
release of Hapi from the PyPI (available from release 2018.1):

e pip install HAPI-Nile=={release}
2.1.6 From sources

The sources for HapiSM can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/MAfarrag/HapiSM

Or download the tarball:

$ curl -0JL https://github.com/MAfarrag/HapiSM/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

To install directly from GitHub (from the HEAD of the master branch):
e pip install git+https://github.com/MAfarrag/HAPI.git
or from Github from a specific release:

e pip install git+https://github.com/MAfarrag/HAPI.git@{release}

2.1. Installation 6

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://github.com/MAfarrag/HapiSM
https://github.com/MAfarrag/HapiSM/tarball/master

Now you should be able to start this environment’s Python with python, try import Hapi to see if the package is
installed.

More details on how to work with conda environments can be found here: https://conda.io/docs/user-guide/tasks/
manage-environments.html

If you are planning to make changes and contribute to the development of Hapi, it is best to make a git clone of the
repository, and do a editable install in the location of you clone. This will not move a copy to your Python installation
directory, but instead create a link in your Python installation pointing to the folder you installed it from, such that any
changes you make there are directly reflected in your install.

e git clone https://github.com/MAfarrag/HAPI.git
¢ cd Hapi

e activate Hapi

e pip install -e .

Alternatively, if you want to avoid using git and simply want to test the latest version from the master branch, you
can replace the first line with downloading a zip archive from GitHub: https://github.com/MAfarrag/HAPI/archive/
master.zip libraries.io.

2.1.7 Install using pip
Besides the recommended conda environment setup described above, you can also install Hapi with pip. For the more
difficult to install Python dependencies, it is best to use the conda package manager:
e conda install numpy scipy gdal netcdf4 pyproj
you can check libraries.io. to check versions of the libraries
Then install a release {release} of Hapi (available from release 2018.1) with pip:

* pip install HAPI-Nile=={release}

2.1.8 Check if the installation is successful

To check it the install is successful, go to the examples directory and run the following command:
° python -m Hapl . Fedhddhht

This should run without errors.

Note: This documentation was generated on Feb 02, 2023
Documentation for the development version: https://Hapi.readthedocs.org/en/latest/

Documentation for the stable version: https://Hapi.readthedocs.org/en/stable/

2.1. Installation 7

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/MAfarrag/HAPI/archive/master.zip
https://github.com/MAfarrag/HAPI/archive/master.zip
https://libraries.io/github/MAfarrag/HAPI
https://libraries.io/github/MAfarrag/HAPI
https://Hapi.readthedocs.org/en/latest/
https://Hapi.readthedocs.org/en/stable/

2.2 Tutorials

2.2.1 Inputs

2.2.2 Lumped Model Run

To run the HBV lumped model inside Hapi you need to prepare the meteorological inputs (rainfall, temperature and
potential evapotranspiration), HBV parameters, and the HBV model (you can load Bergstrom, 1992 version of HBV
from Hapi)

* First load the prepared lumped version of the HBV module inside Hapi, the triangular routing function and the
wrapper function that runs the lumped model RUN.

import Hapi.rrm.hbv_bergestrom92 as HBVLumped
from Hapi.run import Run

from Hapi.catchment import Catchment

from Hapi.rrm.routing import Routing

* read the meteorological data, data has be in the form of numpy array with the following order [rainfall, ET, Temp,
Tm], ET is the potential evapotranspiration, Temp is the temperature (C), and Tm is the long term monthly average
temperature.

Parameterpath = Comp + "/data/lumped/Coello_Lumped2021-03-08_muskingum.txt"
MeteoDataPath = Comp + "/data/lumped/meteo_data-MSWEP.csv"

meteorological data

start = "2009-01-01"

end = "2011-12-31"

name = "Coello"

Coello = Catchment(name, start, end)
Coello.readLumpedInputs(MeteoDataPath)

* Meteorological data

start = "2009-01-01"

end = "2011-12-31"

name = "Coello"

Coello = Catchment(name, start, end)
Coello.readLumpedInputs(MeteoDataPath)

e Lumped model

prepare the initial conditions, cathcment area and the lumped model.

catchment area

AreaCoeff = 1530

[Snow pack, Soil moisture, Upper zone, Lower Zone, Water content]
InitialCond = [0,10,10,10,0]

Coello.readLumpedModel (HBVLumped, AreaCoeff, InitialCond)

* Load the pre-estimated parameters
snow option (if you want to simulate snow accumulation and snow melt or not)

2.2. Tutorials 8

Snow = 0 # no snow subroutine
if routing using Maxbas True, if Muskingum False
Coello.readParameters(Parameterpath, Snow)

* Prepare the routing options.

RoutingFn = Routing.TriangularRouting2
RoutingFn = Routing.Muskingum_V
Route =1

* now all the data required for the model are prepared in the right form, now you can call the runLumped wrapper
to initiate the calculation

Run.runLumped(Coello, Route, RoutingFn)

to calculate some metrics for the quality assessment of the calculate discharge the performancecriteria contains some
metrics like RMSE, NSE, KGE and WB , you need to load it, a measured time series of doscharge for the same period
of the simulation is also needed for the comparison.

all methods in performancecriteria takes two numpy arrays of the same length and return real number.

To plot the calculated and measured discharge import matplotlib

gaugei = 0

plotstart = "2009-01-01"

plotend = "2011-12-31"

Coello.plotHydrograph(plotstart, plotend, gaugei, Title= "Lumped Model")

. image:: /img/lumpedmodel.png
:width: 400pt

¢ To save the results

StartDate = "2009-01-01"
EndDate = "2010-04-20"

Path = SaveTo + "Results-Lumped-Model" + str(dt.datetime.now())[0:10] + ".txt"
Coello.saveResults(Result=5, StartDate=StartDate, EndDate=EndDate, Path=Path)

2.2.3 Lumped Model Calibration

To calibrate the HBV lumped model inside Hapi you need to follow the same steps of running the lumped model with
few extra steps to define the requirement of the calibration algorithm.

import pandas as pd

import datetime as dt

import Hapi.rrm.hbv_bergestrom92 as HBVLumped
from Hapi.rrm.calibration import Calibration
from Hapi.rrm.routing import Routing

from Hapi.run import Run

import Hapi.statistics.performancecriteria as PC

(continues on next page)

2.2. Tutorials 9

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

52

54

(continued from previous page)

Parameterpath = Comp + "/data/lumped/Coello_Lumped2021-03-08_muskingum.txt"
MeteoDataPath = Comp + "/data/lumped/meteo_data-MSWEP.csv"
Path = Comp + "/data/lumped/"

start = "2009-01-01"
end = "2011-12-31"
name = "Coello"

Coello = Calibration(name, start, end)
Coello.readLumpedInputs(MeteoDataPath)

catchment area

AreaCoeff = 1530

temporal resolution

[Snow pack, Soil moisture, Upper zone, Lower Zone, Water content]
InitialCond = [0,10,10,10,0]

no snow subroutine

Snow = 0

Coello.readLumpedModel (HBVLumped, AreaCoeff, InitialCond)

Calibration boundaries

UB = pd.read_csv(Path + "/lumped/UB-3.txt", index_col = 0, header = None)
parnames = UB.index

UB = UB[1].tolist()

LB pd.read_csv(Path + "/lumped/LB-3.txt", index_col = 0, header = None)
LB = LB[1].tolist()

Maxbas = True
Coello.readParametersBounds (UB, LB, Snow, Maxbas=Maxbas)

parameters = []

Routing

Route =1

RoutingFn = Routing.TriangularRoutingl

Basic_inputs = dict(Route=Route, RoutingFn=RoutingFn, InitialValues = parameters)
Objective function
outlet discharge

Coello.readDischargeGauges(Path+"Qout_c.csv", fmt="%Y-%m-%d")

OF_args=[]
OF=PC.RMSE

Coello.readObjectiveFn(PC.RMSE, OF_args)

* after defining all the components of the lumped model, we have to define the calibration arguments

ApiObjArgs = dict(Chms=100, hmcr=0.95, par=0.65, dbw=2000, fileout=1, xinit =0,
filename=Path + "/Lumped_History"+str(dt.datetime.now())[0:10]+".
—txt™")

(continues on next page)

2.2. Tutorials 10

(continued from previous page)

for i in range(len(ApiObjArgs)):
print(list(ApiObjArgs.keys())[i], str(ApiObjArgs[list(ApiObjArgs.keys())[i11))

pll_type = 'POA’
pll_type = None

ApiSolveArgs = dict(store_sol=True, display_opts=True, store_hst=True, hot_start=False)

OptimizationArgs=[ApiObjArgs, pll_type, ApiSolveArgs]

¢ Run Calibration

cal_parameters = Coello.lumpedCalibration(Basic_inputs, OptimizationArgs,..
—printError=None)
print("Objective Function = " + str(round(cal_parameters[0],2)))
print("Parameters are " + str(cal_parameters[1]))

print("Time = " + str(round(cal_parameters[2]['time']/60,2)) +

min")

2.2.4 Distributed Hydrological Model Calibration

The calibration of the Distributed rainfall runoff model follows the same steps of running the model with extra steps to
define the calibration algorithm arguments

1- Catchment Object

¢ Import the Catchment object which is the main object in the distributed model, to read and check the input data,
and when the model finish the simulation it stores the results and do the visualization

class Catchment():

Catchment

Catchment class include methods to read the meteorological and Spatial inputs
of the distributed hydrological model. Catchment class also reads the data
of the gauges, it is a super class that has the run subclass, so you

need to build the catchment object and hand it as an inpit to the Run class
to run the model

methods:
1-readRainfall
2-readTemperature
3-readET
4-readFlowAcc
5-readFlowDir
6-ReadFlowPathLength
7-readParameters
8-readLumpedModel

(continues on next page)

2.2. Tutorials 11

21

22

23

24

25

26

27

28

29

30

40

41

42

43

44

45

46

47

48

49

(continued from previous page)

9-readLumpedInputs
10-readGaugeTable
11-readDischargeGauges
12-readParametersBounds
13-extractDischarge
14-plotHydrograph
15-PlotDistributedQ
16-saveResults

— "Lumped',

— "Lumped',

def __init__(self, name, StartDate, EndDate, fmt="%Y-%m-%d", SpatialResolution =
TemporalResolution = "Daily"):
Catchment (name, StartDate, EndDate, fmt="%Y-%m-%d", SpatialResolution =
TemporalResolution = "Daily")
Parameters

name : [str]

Name of the Catchment.
StartDate : [str]

starting date.
EndDate : [str]

end date.
fmt : [str], optional

format of the given date. The default is "%Y-%m-
SpatialResolution : TYPE, optional

Lumped or 'Distributed' . The default is 'Lumped'.
TemporalResolution : TYPE, optional

"Hourly" or "Daily". The default is "Daily".

* To instantiate the object you need to provide the name, statedate, enddate, and the SpatialResolution

from Hapi.catchment import Catchment
start = "2009-01-01"
end = "2011-12-31"

name = "Coello"

Coello = Catchment(name, start, end, SpatialResolution = "Distributed")

2.2. Tutorials 12

Read Meteorological Inputs

* First define the directory where the data exist

Path = Comp + "/data/distributed/coello"”
PrecPath = Path + "/prec"

Evap_Path = Path + "/evap"

TempPath = Path + "/temp"

FlowAccPath = Path + "/GIS/acc4000.tif"
FlowDPath = Path + "/GIS/fd4000.tif"
ParPathRun = Path + "/Parameter set-Avg/"

* Then use the each method in the object to read the coresponding data

Coello.readRainfall (PrecPath)
Coello.readTemperature (TempPath)
Coello.readET(Evap_Path)
Coello.readFlowAcc(FlowAccPath)
Coello.readFlowDir (FlowDPath)

* To read the parameters you need to provide whether you need to consider the snow subroutine or not

2- Lumped Model

* Get the Lumpde conceptual model you want to couple it with the distributed routing module which in

our case HBV o o
and define the initial condition, and catchment area.

import Hapi.hbv_bergestrom92 as HBV

CatchmentArea = 1530
InitialCond = [0,5,5,5,0]
Coello.readLumpedModel (HBV, CatchmentArea, InitialCond)

* If the Inpus are consistent in dimensions you will get a the following message

2.2. Tutorials

13

img/check_inputs.png

* to check the performance of the model we need to read the gauge hydrographs

Coello.readGaugeTable('"Hapi/Data/00inputs/Discharge/stations/gauges.csv"”, FlowAccPath)
GaugesPath = "Hapi/Data/00inputs/Discharge/stations/"
Coello.readDischargeGauges(GaugesPath, column='id', fmt="%Y-%m-%d")

3-Run Object
* The Run object connects all the components of the simulation together, the Catchment object, the Lake object
and the distributedrouting object

 import the Run object and use the Catchment object as a parameter to the Run object, then call the RunHapi
method to start the simulation

from Hapi.run import Run
Run.RunHapi (Coello)

* the result of the simulation will be stored as attributes in the Catchment object as follow

2.2. Tutorials 14

Outputs:
l1-statevariables: [numpy attribute]
4D array (rows,cols,time,states) states are [sp,wc,sm,uz,lv]
2-qlz: [numpy attribute]
3D array of the lower zone discharge
3-quz: [numpy attribute]
3D array of the upper zone discharge
4-qout: [numpy attribute]
1D timeseries of discharge at the outlet of the catchment
of unit m3/sec
5-quz_routed: [numpy attribute]
3D array of the upper zone discharge accumulated and
routed at each time step
6-gqlz_translated: [numpy attribute]
3D array of the lower zone discharge translated at each time step

4-Extract Hydrographs

 The final step is to extract the simulated Hydrograph from the cells at the location of the gauges to compare

* The extractDischarge method extracts the hydrographs, however you have to provide in the gauge file the coor-
dinates of the gauges with the same coordinate system of the FlowAcc raster

* The extractDischarge will print the performance metics

5-Visualization

* Firts type of visualization we can do with the results is to compare the gauge hydrograph with the simulatied
hydrographs

* Call the plotHydrograph method and provide the period you want to visualize with the order of the gauge

gaugei = 5
plotstart = "2009-01-01"
plotend = "2011-12-31"

Coello.plotHydrograph(plotstart, plotend, gaugei)

2.2. Tutorials 15

Gauge - ExitPoint_coello basin

300 -
=== ExitPoint_coello basin
I — Gauge
250 1 . .
[|
200 1

ol G S . N

Discharge m3/s
o o
o o

. | : 1
| S | ! \.' s f RY el U
I, mr N\ “lﬂ

0_
T T T T T
2009-01-06 2009-09-13 2010-05-21 2011-01-26 2011-10-03
Time
width
400pt
6-Animation

* the best way to visualize time series of distributed data is through visualization, for theis reason, The Catchment
object has plotDistributedResults method which can animate all the results of the model

AnimateArray(Arr, Time, NoElem, TicksSpacing = 2, Figsize=(8,8), PlotNumbers=True,
NumSize= 8, Title = 'Total Discharge',titlesize = 15,.
—Backgroundcolorthreshold=None,
cbarlabel = 'Discharge m3/s', cbarlabelsize = 12, textcolors=("white","black"),
Cbarlength = 0.75, Interval = 200, cmap='coolwarm_r', Textloc=[0.1,0.2],
Gaugecolor="red',Gaugesize=100, ColorScale = 1,gamma=1./2.,linthresh=0.0001,
linscale=0.001, midpoint=0, orientation='vertical', rotation=-90,IDcolor = "blue",
IDsize =10, **kwargs)

Parameters

Arr : [array]
the array you want to animate.

(continues on next page)

2.2. Tutorials 16

(continued from previous page)

Time : [dataframe]
dataframe contains the date of values.
NoElem : [integer]
Number of the cells that has values.
TicksSpacing : [integer], optional
Spacing in the colorbar ticks. The default is 2.
Figsize : [tuple], optional
figure size. The default is (8,8).
PlotNumbers : [bool], optional
True to plot the values intop of each cell. The default is True.
NumSize : integer, optional
size of the numbers plotted intop of each cells. The default is 8.
Title : [str], optional
title of the plot. The default is 'Total Discharge'.
titlesize : [integer], optional
title size. The default is 15.
Backgroundcolorthreshold : [float/integer], optional
threshold value if the value of the cell is greater, the plotted
numbers will be black and if smaller the plotted number will be white
if None given the maxvalue/2 will be considered. The default is None.
textcolors : TYPE, optional
Two colors to be used to plot the values i top of each cell. The default is ("white",
~"black™).
cbarlabel : str, optional
label of the color bar. The default is 'Discharge m3/s'.
cbarlabelsize : integer, optional
size of the color bar label. The default is 12.
Cbarlength : [float], optional
ratio to control the height of the colorbar. The default is 0.75.
Interval : [integer], optional
number to controlthe speed of the animation. The default is 200.
cmap : [str], optional
color style. The default is 'coolwarm_r'.
Textloc : [list], optional
location of the date text. The default is [0.1,0.2].
Gaugecolor : [str], optional
color of the points. The default is 'red'.
Gaugesize : [integer], optional
size of the points. The default is 100.
IDcolor : [str]
the ID of the Point.The default is "blue".
IDsize : [integer]
size of the ID text. The default is 10.
ColorScale : integer, optional
there are 5 options to change the scale of the colors. The default is 1.
1- ColorScale 1 is the normal scale
2- ColorScale 2 is the power scale
3- ColorScale 3 is the SymLogNorm scale
4- ColorScale 4 is the PowerNorm scale
5- ColorScale 5 is the BoundaryNorm scale

gamma : [float], optional

(continues on next page)

2.2. Tutorials 17

(continued from previous page)

value needed for option 2 . The default is 1./2..
linthresh : [float], optional
value needed for option 3. The default is 0.0001.
linscale : [float], optional
value needed for option 3. The default is 0.001.
midpoint : [float], optional
value needed for option 5. The default is 0.
orientation : [string], optional
orintation of the colorbar horizontal/vertical. The default is 'vertical'.
rotation : [number], optional
rotation of the colorbar label. The default is -90.
**kwargs : [dict]
keys:
Points : [dataframe].
dataframe contains two columns 'cell_row', and cell_col to
plot the point at this location

Returns

animation.FuncAnimation.

* choose the period of time you want to animate and the result (total discharge, upper zone discharge, soil mois-
ture,...)

¢ to save the animation

— Please visit https://ffmpeg.org/ and download a version of ffmpeg compitable with your operating
system

— Copy the content of the folder and paste it in the “c:/user/.matplotlib/ffmpeg-static/”
or

— define the path where the downloaded folder “ffmpeg-static” exist to matplotlib using the follow-
ing lines

7-Save the result into rasters

* To save the results as rasters provide the period and the path

StartDate = "2009-01-01"
EndDate = "2010-04-20"
Prefix = 'Qtot_'

Coello.saveResults(FlowAccPath, Result=1, StartDate=StartDate, EndDate=EndDate, Path="F:/
—02Case studies/Coello/Hapi/Model/results/", Prefix=Prefix)

2.2. Tutorials 18

https://ffmpeg.org/

2.2.5 Distributed Hydrological Model

After preparing all the meteorological, GIS inputs required for the model, and Extracting the parameters for the catch-

ment

import numpy as np

import datetime as dt

import gdal

from Hapi.rrm.calibration import Calibration
import Hapi.rrm.hbv_bergestrom92 as HBV

import Hapi.statistics.performancecriteria as PC

Path = Comp + "/data/distributed/coello"”
PrecPath = Path + "/prec”

Evap_Path = Path + "/evap"

TempPath = Path + "/temp"

FlowAccPath = Path + "/GIS/acc4000.tif"
FlowDPath = Path + "/GIS/fd4000.tif"
CalibPath = Path + "/calibration"

SaveTo = Path + "/results"”

AreaCoeff = 1530
#[sp,sm,uz,lz,wc]
InitialCond = [0,5,5,5,0]
Snow = 0

Create the model object and read the input data

Sdate = '2009-01-01'

Edate = '2011-12-31"

name = "Coello"

Coello = Calibration(name, Sdate, Edate, SpatialResolution = "Distributed™)

Meteorological & GIS Data
Coello.readRainfall (PrecPath)
Coello.readTemperature(TempPath)
Coello.readET(Evap_Path)

Coello.readFlowAcc(FlowAccPath)
Coello.readFlowDir(FlowDPath)

Lumped Model
Coello.readLumpedModel (HBV, AreaCoeff, InitialCond)

Gauges Data

Coello.readGaugeTable(Path+"/stations/gauges.csv", FlowAccPath)
GaugesPath = Path+"/stations/"
Coello.readDischargeGauges(GaugesPath, column='id', fmt="%Y-%m-%d")

2.2. Tutorials

19

-Spatial Variability Object

from Hapi.rrm.distparameters import DistParameters as DP

e The DistParameters distribute the parameter vector on the cells following some sptial logic (same set of pa-
rameters for all cells, different parameters for each cell, HRU, different parameters for each class in aditional
map)

raster = gdal.Open(FlowAccPath)

for lumped catchment parameters
no_parameters = 12

klb = 0.5
kub = 1
B

no_lumped_par = 1
lumped_par_pos = [7]

SpatialVarFun = DP(raster, no_parameters, no_lumped_par=no_lumped_par,

lumped_par_pos=lumped_par_pos,Function=2, Klb=klb, Kub=kub)
calculate no of parameters that optimization algorithm is going to generate
SpatialVarFun.ParametersNO

* Define the objective function

coordinates = Coello.GaugesTable[['id','x"','y", 'weight']][:]

define the objective function and its arguments
OF_args = [coordinates]

def OF(Qobs, Qout, g_uz_routed, q_lz_trans, coordinates):

Coello.extractDischarge()

all_errors=[]

error for all internal stations

for i in range(len(coordinates)):

all_errors.append((PC.RMSE(Qobs.loc[:,Qobs.columns[0]],Coello.Qsim[:,i])))

—#*coordinates.loc[coordinates.index[i], weight']

print(all_errors)

error = sum(all_errors)

return error

Coello.readObjectiveFn(OF, OF_args)

2.2. Tutorials 20

-Calibration algorithm Arguments

* Create the options dictionary all the optimization parameters should be passed to the optimization object inside
the option dictionary:

to see all options import Optimizer class and check the documentation of the method setOption

ApiObjArgs = dict(hms=50, hmcr=0.95, par=0.65, dbw=2000, fileout=1,
filename=SaveTo + "/Coello_"+str(dt.datetime.now())[0:10]+".txt")

for i in range(len(ApiObjArgs)):
print(list(ApiObjArgs.keys())[i], str(ApiObjArgs[list(ApiObjArgs.keys())[i]1]1))

'POA'
None

pll_type
pll_type

ApiSolveArgs = dict(store_sol=True, display_opts=True, store_hst=True,hot_start=False)

OptimizationArgs=[ApiObjArgs, pll_type, ApiSolveArgs]

* Run Calibration algorithm

cal_parameters = Coello.runCalibration(SpatialVarFun, OptimizationArgs,printError=0)

¢ Save results

SpatialVarFun.Function(Coello.Parameters, kub=SpatialVarFun.Kub, klb=SpatialVarFun.Klb)
SpatialVarFun.saveParameters(SaveTo)

2.3 Hydrodynamic model

2.3. Hydrodynamic model 21

	Hapi - Hydrological library for Python
	Main Features
	IHE-Delft sessions
	Future work

	References
	Installation
	Stable release
	conda
	Installing Python and gdal dependencies
	Installing Python
	Install as a conda environment
	From sources
	Install using pip
	Check if the installation is successful

	Tutorials
	Inputs
	Lumped Model Run
	Lumped Model Calibration
	Distributed Hydrological Model Calibration
	1- Catchment Object
	Read Meteorological Inputs

	2- Lumped Model
	3-Run Object
	4-Extract Hydrographs
	5-Visualization
	6-Animation
	7-Save the result into rasters

	Distributed Hydrological Model
	-Spatial Variability Object
	-Calibration algorithm Arguments

	Hydrodynamic model

